Rapid and continuous magnetic separation in droplet microfluidic devices.

نویسندگان

  • Eric Brouzes
  • Travis Kruse
  • Robert Kimmerling
  • Helmut H Strey
چکیده

We present a droplet microfluidic method to extract molecules of interest from a droplet in a rapid and continuous fashion. We accomplish this by first marginalizing functionalized super-paramagnetic beads within the droplet using a magnetic field, and then splitting the droplet into one droplet containing the majority of magnetic beads and one droplet containing the minority fraction. We quantitatively analysed the factors which affect the efficiency of marginalization and droplet splitting to optimize the enrichment of magnetic beads. We first characterized the interplay between the droplet velocity and the strength of the magnetic field and its effect on marginalization. We found that marginalization is optimal at the midline of the magnet and that marginalization is a good predictor of bead enrichment through splitting at low to moderate droplet velocities. Finally, we focused our efforts on manipulating the splitting profile to improve the enrichment provided by asymmetric splitting. We designed asymmetric splitting forks that employ capillary effects to preferentially extract the bead-rich regions of the droplets. Our strategy represents a framework to optimize magnetic bead enrichment methods tailored to the requirements of specific droplet-based applications. We anticipate that our separation technology is well suited for applications in single-cell genomics and proteomics. In particular, our method could be used to separate mRNA bound to poly-dT functionalized magnetic microparticles from single cell lysates to prepare single-cell cDNA libraries.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Continuous-flow In-droplet Magnetic Particle Separation in a Droplet-based Microfluidic Platform

ABSTRACT We demonstrate a droplet-based microfluidic device in which in-droplet magnetic bead separation is performed in continuous-flow. Two droplets containing different solution for the magnetic bead separation are generated in pair-wise manner. Sequential fusion of droplets occurs by a geometrical structure. The magnetic beads are deflected by externally applied magnetic force from one side...

متن کامل

On-chip Investigation of Drug-protein Binding by Means of Droplet Microfluidics and Magnetic Beads

In this study we give the proof of concept for a method to determine binding constants of two reagents. By implementing a technique based on magnetic beads with a microfluidic device for segmented flow generation, we demonstrate, for individual droplets, fast, robust and complete separation of the magnetic beads. We employ the method for characterization of drug-protein binding, here warfarin t...

متن کامل

Numerical Study of Droplet Generation Process in a Microfluidic Flow Focusing

Microfluidic flow focusing devices have been utilized for droplet generation on account of its superior control over droplet size. Droplet based microfluidics addressed many scientific issues by providing a novel technological platform for applications such as biology, pharmaceutical industry, biomedical studies and drug delivery. This study numerically investigated the droplet generation proce...

متن کامل

Bead mediated separation of microparticles in droplets

Exchange of components such as particles and cells in droplets is important and highly desired in droplet microfluidic assays, and many current technologies use electrical or magnetic fields to accomplish this process. Bead-based microfluidic techniques offer an alternative approach that uses the bead's solid surface to immobilize targets like particles or biological material. In this paper, we...

متن کامل

Measuring rapid kinetics by a potentiometric method in droplet-based microfluidic devices.

Droplets containing RNA and Mg(2+) were generated in microfluidic channels. By integrating a group of pneumatic valves and phase separation channels in the microfluidic system, the rapid RNA-Mg(2+) binding kinetics was studied by measuring the Mg(2+) ion concentration using an ion-selective electrode.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Lab on a chip

دوره 15 3  شماره 

صفحات  -

تاریخ انتشار 2015